G. LIST OF RESOURCES RELATED TO NONSTRUCTURAL COMPONENTS This appendix is a list of available resources related to nonstructural components, including codes and standards, testing protocols, guidance documents, nonproprietary details, photos, sample specifications, proprietary details, products, and research efforts. This list originates from Appendix B of the ATC-69 Report, *Reducing the Risks of Nonstructural Earthquake Damage, State-of-the-Art and Practice Report,* prepared by the Applied Technology Council for FEMA (ATC, 2008). The information in this appendix is organized into the following tables: | Table G-1 | Codes and Standards Related to Nonstructural Components | G-2 | |-----------|--|------| | Table G-2 | Guidance Documents Related to Nonstructural Components | G-10 | | Table G-3 | Nonproprietary Details and Other Resources for Nonstructural
Components | G-23 | | Table G-4 | Proprietary Details and Products for the Protection of
Nonstructural Components | G-32 | | Table G-5 | Recent and Ongoing Research Related to Nonstructural Components | G-37 | Table G-1 Codes and Standards Related to Nonstructural Components (continued) | Document
Number/Source | Title | Publication
Date | Relevant
Sections | Comments | |---------------------------|---|---------------------|---|---| | ACI 318-08 | Building Code Requirements
for Reinforced Concrete and
Commentary | 2008 | Appendix D | Appendix on requirements for anchorage in concrete; published by the American Concrete Institute, Detroit, Michigan. | | ACI 355.2-07 | Qualification of Post-Installed
Mechanical Anchors in
Concrete | 2007 | | Published by the American Concrete Institute, Detroit, Michigan. | | ASCE/SEI 7-05 | Minimum Design Loads for
Buildings and Other
Structures | 2005 | Chapter 13 | Chapter specifying seismic design requirements for nonstructural components; published by the American Society of Civil Engineers, Reston, Virginia. | | SEI/ASCE 31-03 | Seismic Evaluation of Existing
Buildings | 2003 | Sections 3.9,
4.2.7, 4.8,
and Table 4-9 | Successor document to FEMA 310 Handbook for the Seismic Evaluation of Buildings – A Prestandard. Relevant sections describe evaluation procedures for existing nonstructural components. Includes comprehensive checklists of potential nonstructural hazards. Published by the American Society of Civil Engineers, Reston, Virginia. | | ASCE/SEI 41-06 | Seismic Rehabilitation of
Existing Buildings | 2007 | Chapter 11 | Successor document to FEMA 356 Prestandard and Commentary for the Seismic Rehabilitation of Buildings. Relevant chapter describes design procedures for the rehabilitation of existing nonstructural components, and a table identifying nonstructural component types and their applicability to different performance objectives. Published by the American Society of Civil Engineers, Reston, Virginia. | Table G-1 Codes and Standards Related to Nonstructural Components (continued) | Document
Number/Source | Title | Publication
Date | Relevant
Sections | Comments | |--|---|---------------------|----------------------|---| | ASCE/SEI 43-05 | Seismic Design Criteria for
Structures, Systems, and
Components in Nuclear
Facilities | 2005 | | Provides design criteria for structures, systems, and components in nuclear facilities, with the goal of ensuring that these facilities can withstand the effects of earthquake ground shaking at the desired level of performance. Published by the American Society of Civil Engineers, Reston, Virginia. | | ASHRAE SPC 171P | Method of Test of Seismic
Restraint Devices for
HVAC&R Equipment | 2006 | | Establishes methods of testing and documenting the working shear and tensile strength of seismic restraint devices that are integral with vibration isolators or resilient devices. Published by the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, Georgia. | | ASTM E580/
E580M-06 | Standard Practice for
Application of Ceiling
Suspension Systems for
Acoustical Tile and Lay-In
Panels in Areas Requiring
Seismic Restraint | 2006 | | Standard for Zone 2; could also be used for Zones 3 and 4. Published by ASTM International, West Conshohocken, Pennsylvania. | | Bulletin
2004-014-BU
(Vancouver) | Seismic Restraint of
Nonstructural Components | 2004 | | Addresses suspended ceilings and non-load bearing partitions. Published by the City of Vancouver, British Columbia. | Table G-1 Codes and Standards Related to Nonstructural Components (continued) | Document
Number/Source | Title | Publication
Date | Relevant
Sections | Comments | |---------------------------|---|---------------------|----------------------|--| | CSA S832-06
(Canada) | Seismic Risk Reduction of
Operational and Functional
Components (OFCs) of
Buildings | 2006 | | Operational and functional components (OFCs) is a Canadian term for nonstructural components. The second edition of a document first published in 2001. Describes how to identify and evaluate hazards caused by nonstructural components, and provides strategies to mitigate damage. Intended to be applicable to most buildings types, either new or existing, and intended for building owners, inspectors, facility managers, engineers, architects and others whose focus is to provide safety, serviceability and durability of nonstructural components when subjected to earthquakes. Published by the Canadian Standard Association, Mississauga, Ontario. | | E.030
(Peru) | National Construction Code,
Technical Standard for
Buildings, E.030 Earthquake-
Resistant Design | 2003 | | Design requirements for buildings in Peru. Drift provisions changed in 1997, and are now among the most stringent in the world. Drift must be computed without an R factor, and allowable drift is limited to .007h for reinforced concrete, and .01h for steel structures. Standard school construction must be confined concrete, and masonry infill must be isolated from the concrete frame. Schools built since 1997 meeting these criteria have suffered virtually no damage in recent large earthquakes in Peru. Published by El Servicio Nacional de Normalización, Capacitación e Investigación para la Industria de la Construcción (SENCICO), Lima, Perú. | Table G-1 Codes and Standards Related to Nonstructural Components (continued) | Document
Number/Source | Title | Publication
Date | Relevant
Sections | Comments | |----------------------------|--|---------------------|-------------------------------------|--| | EN 1998-1:2004(E) (Europe) | Eurocode 8: Design of
Structures For Earthquake
Resistance (English version,
Final Draft) | 2004 | Part 1,
Sections
4.3.5, 4.3.6 | Includes general rules, seismic actions, and rules for buildings. Relevant sections cover design of nonstructural elements and additional measures for masonry infilled frames. Non-structural elements mentioned include parapets, gables, antennae, mechanical appendages and equipment, curtain walls, partitions, and railings. Nonstructural elements that might cause risks to persons, affect the main structure, or disrupt services of
critical facilities must be verified to resist seismic design actions. Designs for nonstructural elements of great importance are based on realistic models of the structure and on appropriate response spectra derived from the response of the supporting structural elements. Lateral force calculations include consideration of period ratio, importance factor, and behavior factor. Published by the European Committee for Standardization (CEN). | | IBC 2006 | 2006 International Building
Code | 2006 | | National model building code, latest edition; scheduled for adoption in most jurisdictions across the United States. Specifically references ASCE 7-05 for design of nonstructural components. Published by the International Code Council, Washington, D.C. | | IBC 2003 | 2003 International Building
Code | 2003 | | National model building code; adopted in some areas of the United States. Published by the International Code Council, Washington, D.C. | Table G-1 Codes and Standards Related to Nonstructural Components (continued) | Document
Number/Source | Title | Publication
Date | Relevant
Sections | Comments | |---------------------------|---|---------------------|----------------------|--| | ICC-ES AC-156 | Acceptance Criteria for
Seismic Qualification by
Shake-Table Testing of
Nonstructural Components
and Systems. | 2004 | | Published by the International Code Council Evaluation Service, Whittier, California. | | NFPA 13 | Standard for the Installation
of Sprinkler Systems, 2007
Edition | 2007 | | Published by the National Fire Protection Association, Quincy, Massachusetts. | | NCh 433.Of96
(Chile) | Chilean Norm
NCh 433.Of96, Earthquake
Resistant Design of Buildings | 1996 | | Chilean code for buildings. Includes the following drift criteria: (1) drift must be computed without an R factor; and (2) must be less than 0.002h for buildings with precast shear walls with dry joints; less than 0.003h for shear wall building with rigidly attached masonry infill; less than .0075h for unbraced frames with isolated infill; and less than .015h for other structures. Includes a scale factor Q/Q_{min} that allows a reduction of the computed drift for longer period structures where the design base shear Q is less than a minimum base shear Q_{min} . Stringent drift criteria (more stringent than U.S. codes) have resulted in an almost exclusive use of shear wall systems in buildings. As a result, drift-related nonstructural damage is significantly reduced. Published by the Instituto Nacional de Normalizacion (INN-Chile), Santiago, Chile. | Table G-1 Codes and Standards Related to Nonstructural Components (continued) | Document
Number/Source | Title | Publication
Date | Relevant
Sections | Comments | |----------------------------|--|---------------------|----------------------|---| | NCh 2369.Of2003
(Chile) | Chilean Norm NCh2369,
Earthquake Resistant Design
of Industrial Structures and
Facilities | 2003 | | Chilean code for industrial buildings. Includes recommendations and design rules for mechanical equipment that could be applicable to other types of buildings. Currently only available in Spanish. Published by the Instituto Nacional de Normalizacion (INN-Chile), Santiago, Chile. | | UBC 1961 | Uniform Building Code, 1961
Edition | 1961 | | First appearance of separate provisions for nonstructural components in the UBC; maximum lateral force of 0.2g in Zone 3. | | UBC 1976 | Uniform Building Code, 1976
Edition | 1976 | | Nonstructural provisions updated in response to 1971 San Fernando Earthquake; maximum force increased to 0.3g in Zone 4. | | UBC 1988 | Uniform Building Code, 1988
Edition | 1988 | | Update of nonstructural provisions to consider response of non-rigid items and items at grade; maximum force remained 0.3g in Zone 4 for rigid items. | | UBC 1997 | Uniform Building Code, 1997
Edition | 1997 | | Nonstructural seismic requirements are a blend of requirements from the 1994 and 1997 NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures. | | USACE
TI 809-04 | Tri-Service Manual, Seismic
Design for Buildings | 1998 | Chapter 10 | Successor document to TM 5-809-10 and TM 5-809-10-1. Published by the US Army Corps of Engineers, Washington, D.C. | Table G-1 Codes and Standards Related to Nonstructural Components (continued) | Document
Number/Source | Title | Publication
Date | Relevant
Sections | Comments | |---------------------------|---|---------------------|--------------------------|---| | USACE
TM 5-809-10 | Tri-Service Manual, Seismic
Design for Buildings | 1996 | Chapter 8,
Appendix L | Provides a dynamic analysis procedure for design of nonstructural components that must remain functional after a major earthquake. Requires generation of floor response spectra and consideration of inter-story drift at the location of essential equipment. Appendix includes four design examples. Published by the US Army Corps of Engineers, Washington, D.C. | | USACE
TM 5-809-10-1 | Tri-Service Manual, Seismic
Design Guidelines for
Essential Buildings | 1986 | Chapter 6 | Provides methodology for design; defines essential nonstructural systems (Table 6-3); defines two levels of earthquake ground motion (EQ-I and EQ-II); requires equipment certification. Published by the US Army Corps of Engineers, Washington, D.C. | | USACE
TM-5-809-10-2 | Tri-Service Manual, Seismic
Design Guidelines for
Upgrading Existing Buildings | 1988 | Chapter 9 | Chapter focuses on improving performance of existing nonstructural installations. Includes a list of nonstructural systems with descriptions of potential damage and failure modes (Table 9-1). Published by the US Army Corps of Engineers, Washington, D.C. | | VISCMA 102-07 | Static Qualification Standards
for Obtaining a VISCMA
Compliant Seismic
Component Rating | 2007 | | Testing protocol for mechanical, electrical and plumbing equipment. Published by the Vibration Isolation and Seismic Control Manufacturers Association, Wayne, Pennsylvania. | Table G-2 Guidance Documents Related to Nonstructural Components (continued) | Document
Number/Source | Title | Publication
Date | Relevant
Sections | Comments | |---------------------------|--|---------------------|----------------------|---| | ASHRAE RP-812 | A Practical Guide to Seismic
Restraint | 1999 | | Published by the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, Georgia. | | ASHRAE /SMACNA | Seismic Restraint Applications CD-ROM | 2002 | | Provides technical information for design and installation of seismic restraints for HVAC equipment, piping, and ducts. Includes representative bracing details, layout examples, and tables. Consists of portions of the following documents: SMACNA's Seismic Restraint Manual: Guidelines for Mechanical Systems; ASHRAE's Handbook - HVAC Applications (2003); and ASHRAE's A Practical Guide to Seismic Restraint. Produced by the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. and the Sheet Metal and Air Conditioning Contractors' National Association. | | CISCA 1991 | Recommendations for
Direct-Hung Acoustical and
Lay-in Panel Ceilings, Seismic
Zones 0-2 | 1991 | | Industry standards for ceilings in low seismic zones. Published by Ceilings and Interior Systems Construction Association, Deerfield, Illinois. | | CISCA 1990 |
Recommendations for
Direct-Hung Acoustical and
Lay-in Panel Ceilings, Seismic
Zones 3-4 | 1990 | | Industry standards for ceilings in high seismic zones. Published by Ceilings and Interior Systems Construction Association, Deerfield, Illinois. | Table G-2 Guidance Documents Related to Nonstructural Components (continued) | Document
Number/Source | Title | Publication
Date | Relevant
Sections | Comments | |---------------------------|--|---------------------|----------------------|--| | | | | | | | DGS, DSA
(California) | Guide and Checklist for
Nonstructural Earthquake
Hazards in California Schools | | | Identifies potential hazards associated with nonstructural components and provides recommendations to mitigate hazards. Includes typical details and a nonstructural earthquake hazards checklist. Published by the California State Department of General Services, Division of the State Architect, and the Governer's Office of Emergency Services, Sacramento, California. | | DOISSP | Nonstructural Hazards
Rehabilitation Guidelines;
Vol. I; Guidelines Usage,
Architectural, Mechanical,
Electrical, Plumbing | | | Contains guidance gathered from various sources, both public and private sources. Includes both proprietary and non-proprietary details. Published by the Department of the Interior Bureau of Reclamation, Seismic Safety Program (DOISSP), Washington, D.C. | | DOISSP | Nonstructural Hazards
Rehabilitation Guidelines;
Vol. II; Furnishings, Interior
Equipment, Miscellaneous
Components, Mobile
Homes, Manufactured
Homes, FEMA 273, FEMA
310, FEMA 178, & ASCE 31- | | | Contains guidance gathered from various sources, both public and private sources. Includes both proprietary and non-proprietary details. Published by the Department of the Interior Bureau of Reclamation, Seismic Safety Program (DOISSP), Washington, D.C. | Table G-2 Guidance Documents Related to Nonstructural Components (continued) | Document
Number/Source | Title | Publication
Date | Relevant
Sections | Comments | |---------------------------|---|---------------------|----------------------|---| | | xx Excerpts | | | | | EERI 84-04 | Nonstructural Issues of
Seismic Design and
Construction | 1984 | | Results of workshop including invited papers on nonstructural issues. Published by the Earthquake Engineering Research Institute, Oakland, California. | | FEMA | Instructor's Guide for
Nonstructural Earthquake
Mitigation for Hospitals and
other Health Care facilities. | 1988 | | Materials for course given by Emergency Management Institute, Emmitsburg, Maryland. | | FEMA | Final Report, Nonstructural Earthquake Mitigation Guidance Manual. | 2004 | | Based on FEMA Region X Earthquake Hazard Mitigation Handbook for Public Facilities, 2002. Includes flowcharts, step-by-step procedures and some details. Divides nonstructural components into four groups: contents, exterior building elements, interior building elements, and building utilities. Prepared by URS Group, Inc. for FEMA. | Table G-2 Guidance Documents Related to Nonstructural Components (continued) | Document
Number/Source | Title | Publication
Date | Relevant
Sections | Comments | |---------------------------|--|---------------------|----------------------|--| | FEMA Region X | Earthquake Hazard
Mitigation Handbook for
Public Facilities | 2002 | | Available at http://www.conservationtech.com/FEMA-WEB/FEMA-subweb-EQ/index.htm | | FEMA 74 | Reducing the Risks of
Nonstructural Earthquake
Damage: A Practical Guide.
Third Edition | 1994 | | Successor document to previous editions of FEMA 74, first published in 1985. | | FEMA 74-FM | Earthquake Hazard
Mitigation for Nonstructural
Elements, Field Manual | 2005 | | Includes three types of details: Non-Engineered, Prescriptive, and Engineered. Contains more details than FEMA 74, along with a field data sheet based on the FEMA 74 checklist. | | FEMA 150 | Seismic Considerations:
Health Care Facilities | 1990 | | Published by the Federal Emergency Management Agency, Washington, D.C. | | FEMA 172 | NEHRP Handbook of
Techniques for the Seismic
Rehabilitation of Existing
Buildings | 1992 | Chapters
5, 6 | Relevant chapters include details for electrical cabinets, chimneys, parapets, masonry partitions, raised access floors, and mechanical equipment. | | FEMA 178 | NEHRP Handbook for the
Seismic Evaluation of Existing | 1992 | Section 10.5 | Predecessor document to FEMA 310. | Table G-2 Guidance Documents Related to Nonstructural Components (continued) | Document
Number/Source | Title | Publication Relevant Date Sections | | Comments | | |---------------------------|--|------------------------------------|---|---|--| | | Buildings | | | | | | FEMA 232 | Homebuilders' Guide to
Earthquake-Resistant Design
and Construction | 2006 | | Includes details based on the 1994 edition of FEMA 74. | | | FEMA 273 | NEHRP Guidelines for the
Seismic Rehabilitation of
Buildings | 1997 | | Predecessor document to FEMA 356. | | | FEMA 310 | Handbook for the Seismic
Evaluation of Buildings - A
Prestandard | 1998 | Sections 3.9,
4.2.7, 4.8,
and Table 4-
9 | Predecessor document to SEI/ASCE 31-03. Relevant sections describe evaluation procedures for existing nonstructural components. Includes comprehensive checklists of potential nonstructural hazards. | | | FEMA 356 | Prestandard and
Commentary for the Seismic
Rehabilitation of Buildings | 2000 | Chapter 11 | Successor document to FEMA 273/274, and predecessor to ASCE/SEI 31-03. Relevant chapter describes design procedures for the rehabilitation of existing nonstructural components, and a table identifying nonstructural component types and their applicability to different performance objectives. | | Table G-2 Guidance Documents Related to Nonstructural Components (continued) | Document
Number/Source | Title | Publication
Date | Relevant
Sections | Comments | |---------------------------|---|---------------------|----------------------|--| | FEMA 389 | Communicating with Owners
and Managers of New
Buildings on Earthquake
Risk: A Primer for Design
Professionals | 2004 | | | | FEMA 395 | Incremental Seismic Rehabilitation of School Buildings (K-12): Providing Protection to People and Buildings | 2003 | | Includes a table of "Nonstructural Seismic Performance Improvements" (page C-21) that lists possible seismic performance improvements that could be undertaken on nonstructural components common to school occupancies. | | FEMA 396 | Incremental Seismic
Rehabilitation of Hospital
Buildings: Providing
Protection to People and
Buildings | 2003 | | Includes a table of "Nonstructural Seismic Performance Improvements" (page C-23) that lists possible seismic performance improvements that could be undertaken on nonstructural components common to hospital occupancies. | | FEMA 397 | Incremental Seismic Rehabilitation of Office Buildings: Providing Protection to People and Buildings | 2003 | | Includes a table of "Nonstructural Seismic Performance Improvements" (page C-24) that lists possible seismic performance improvements that could be undertaken on nonstructural components common to office occupancies. | Table G-2 Guidance Documents Related to Nonstructural Components (continued) | Document
Number/Source | Title | Publication
Date | Relevant
Sections | Comments | |---------------------------|---|---------------------|----------------------
---| | FEMA 398 | Incremental Seismic Rehabilitation of Multifamily Apartment Buildings: Providing Protection to People and Buildings | 2004 | | Includes a table of "Nonstructural Seismic Performance Improvements" (page C-22) that lists possible seismic performance improvements that could be undertaken on nonstructural components common to multifamily apartment occupancies. | | FEMA 399 | Incremental Seismic
Rehabilitation of Retail
Buildings: Providing
Protection to People and
Buildings | 2004 | | Includes a table of "Nonstructural Seismic Performance Improvements" (page C-22) that lists possible seismic performance improvements that could be undertaken on nonstructural components common to retail occupancies. | | FEMA 400 | Incremental Seismic
Rehabilitation of Hotel and
Motel Buildings | 2005 | | Includes a table of "Nonstructural Seismic Performance Improvements" (page C-23) that lists possible seismic performance improvements that could be undertaken on nonstructural components common to hotel and motel occupancies. | | FEMA 412 | Installing Seismic Restraints for Mechanical Equipment | 2002 | | Includes numerous elaborate details and many recommendations for seismic restraint of mechanical equipment. | | FEMA 413 | Installing Seismic Restraints for Electrical Equipment | 2004 | | Includes numerous elaborate details and many recommendations for seismic restraint of electrical equipment. | Table G-2 Guidance Documents Related to Nonstructural Components (continued) | Document
Number/Source | Title | Publication
Date | Relevant
Sections | Comments | | | |---------------------------|--|---------------------|--------------------------------------|---|--|--| | FEMA 414 | Installing Seismic Restraints for Duct and Pipe | 2004 | | Includes numerous elaborate details and many recommendations for seismic restraint of duct and piping components. | | | | FEMA 424 | Design Guide for Improving
School Safety in Earthquakes,
Floods, and High Winds | | | Includes pictures of nonstructural damage (pages 4-17 through 4-19, 4-23, 4-24, 4-30, 4-31); a list of types of nonstructural components (page 4-59); graphics for ceilings, shelves, and walls (pages 4-60 and 4-61). | | | | FEMA 433 | Using HAZUS-MH for Risk
Assessment: How-To Guide | 2004 | | | | | | FEMA 445 | Next-Generation Performance-Based Seismic Design Guidelines: Program Plan for New and Existing Buildings | 2006 | Section 4.2 | Describes how performance-based seismic design guidelines will be developed under the ATC-58 Project. Section 4.2 refers specifically to the development of nonstructural performance products. | | | | FEMA 450 | NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures, Part 1 and 2: Provisions and Commentary | 2004 | Chapters 6,
6A, and
Commentary | Provides criteria for the design and construction of structures to resist earthquake ground motions. Relevant chapters include prescriptive requirements for the design of architectural, mechanical, electrical and piping components. | | | Table G-2 Guidance Documents Related to Nonstructural Components (continued) | Document
Number/Source | Title | Publication
Date | Relevant
Sections | Comments | |---------------------------|---|---------------------|---------------------------|--| | FEMA 452 | A How-To Guide to Mitigate
Potential Terrorist Attacks
Against Buildings | 2005 | | | | FEMA 454 | Designing for Earthquakes: A
Manual for Architects | 2006 | Section 6.6,
Chapter 9 | Discussion of code issues including nonstructural issues. Contains a collection of photos and generic details borrowed from various sources including: FEMA 74; details developed for the Lawrence Livermore National Lab; and the SMACNA Guidelines. Includes a discussion on the need for systems engineering, considering all parts of the building as a whole. Provides a checklist (Table 9-3) showing allocation of design responsibilities for nonstructural systems and components. | | FEMA 460 | Seismic Considerations for
Steel Storage Racks Located
in Areas Accessible to the
Public | 2005 | | Includes: a review of the performance of storage racks in past earthquakes; a history of the development of codes and standards used for storage rack design; current storage rack design practices; guidance on recommended performance goals and design requirements for storage racks; guidelines for implementation/responsibilities associated with the specification, procurement, and installation of pallet storage racks; suggested guidance for securing contents; recommendations for operations and use; suggested guidance for quality assurance programs; a discussion of current and past storage rack research and testing; suggestions for post-earthquake inspections; and proposed modifications to seismic | Table G-2 Guidance Documents Related to Nonstructural Components (continued) | Document
Number/Source | Title | Publication
Date | Relevant
Sections | Comments | |---------------------------|---|---------------------|----------------------|---| | | | | | design provisions and standards for racks. | | FEMA 461 | Interim Protocols for
Determining Seismic
Performance Characteristics
of Structural and
Nonstructural Components | 2007 | | Provides an interim protocol for testing of building components to establish their performance capability in the form of fragility functions. Fragility functions are used to assess the seismic performance of individual components, systems incorporating these components, and buildings containing these systems and components that are subjected to earthquake shaking. Protocols are not intended for seismic performance qualification testing of nonstructural components required by the building code, although the loading protocols could be used for that purpose. | | FEMA 577 | Design Guide for Improving
Hospital Safety in
Earthquakes, Floods, and
High Winds: Providing
Protection to People and | 2007 | | | Table G-2 Guidance Documents Related to Nonstructural Components (continued) | Document
Number/Source | Title | Publication
Date | Relevant
Sections | Comments | |----------------------------|---|---------------------|----------------------|--| | | Buildings | | | | | FEMA 582 | Design Guide for Improving
Commercial Buildings Safety
in Earthquakes, Floods, and
High Winds | Future | | | | John Wiley & Sons,
Inc. | Earthquakes, an Architect's
Guide to Nonstructural
Seismic Hazards | 1990 | | Target audience is architects. Written by H.J. Lagorio. Published by John Wiley & Sons, Inc., New York, New York. | | OCIPEP
(Canada) | Seismic Hazard Assessment
and Mitigation for Buildings'
Functional and Operational
Components: A Canadian
Perspective | 2002 | | Contains figures and photos from various sources, including FEMA 74. Includes damage photos from 1999 Chi Chi, Taiwan Earthquake: damage to rooftop equipment (page 19); collapse of free-standing non-structural wall (page 20); and damage to sprinkler systems. Prepared by the Department of Civil Engineering, University of Ottowa, for the Office of Critical Infrastructure Protection and Emergency Preparedness (OCIPEP), Ontario, Canada. | Table G-2 Guidance Documents Related to Nonstructural Components (continued) |
Document
Number/Source | Title | Publication
Date | Relevant
Sections | Comments | |--|--|---------------------|----------------------|---| | Oregon Emergency
Management | Earthquake Preparedness
and Mitigation Guidance for
Oregon State Agency Offices
and Warehouses | 2004 | | Focuses on office and warehouse occupancies, with special attention to storage racks. Includes photos and guidance including shrink-wrap and netting to mitigate potential falling hazards. Provides some specific information on performance of furniture by specific vendors (Hayworth, Steelcase, and Artmet). | | Pan American
Health
Organization | Principles of Disaster
Mitigation in Health Facilities | 2000 | Chapter 3 | Includes guidance on assessing and mitigating seismic vulnerabilities of nonstructural components. Published by the Pan American Health Organization, Regional Office of the World Health Organization, Washington, D.C. | | Salt Lake City
School District | Seismic Design Criteria of Nonstructural Systems For New School Facilities And Existing School Facilities | 2001 | | Developed under a FEMA "Project Impact" Grant. Intended for use on new school design projects and seismic retrofit projects in the Salt Lake City School District. Establishes minimum design procedures, general detailing requirements, design approval procedures, and construction inspection procedures for nonstructural items. The design engineer or architect is responsible for development of project specific nonstructural details. Some requirements exceed the minimum standards given in the Uniform Building Code (UBC). | | Seattle Public
Schools | School Facilities Manual:
Nonstructural Protection
Guide. Safer Schools,
Earthquake Hazards,
Nonstructural. Second | 2000 | | Includes detailed inventory form and details not included in FEMA 74. | Table G-2 Guidance Documents Related to Nonstructural Components (continued) | Document
Number/Source | Title | Publication
Date | Relevant
Sections | Comments | |---------------------------------------|--|---------------------|----------------------|--| | | Edition | | | | | University of
California, Berkeley | UC Berkeley: Q-Brace
Quake Bracing Guidelines | 2005 | | Guidelines developed for University of California, Berkeley campus facilities. Includes detailed solutions for contents identifying vendor supplied products or size of hardware to use. | | USACERL
TR-98/34 | Seismic Mitigation for
Equipment at Army Medical
Centers | 1998 | | Presents simple methods for reducing the seismic vulnerability of equipment at Army medical centers. Illustrations, observations, and recommendations are based on examples from Madigan Army Medical Center (MAMC). Concerns about particular well-anchored critical medical equipment are presented. Published by the U.S. Army Construction Engineering Research Laboratories. | | USACE, Engineering and Support Center | Seismic Protection for
Mechanical Equipment | | | Presentation on procedures to design seismic supports of equipment, piping, and ducts; includes force coefficients and methods to calculate forces. Also includes a list of references useful as guidelines for the design. Available from the U.S. Army Corps of Engineers at http://www.dtic.mil/ndia/2005triservice/track16/stut.pdf . | Table G-2 Guidance Documents Related to Nonstructural Components (continued) | Document
Number/Source | Title | Publication
Date | Relevant
Sections | Comments | |---------------------------|---|---------------------|----------------------|---| | VISCMA | Understanding the 2000 IBC
Code (Architectural
Components and Equipment
Restraint) | 2005 | | Available on the Vibration Isolation and Seismic Control Manufacturers Association website at http://www.viscma.com/articles.htm | | VISCMA | The Pitfalls of Combining
Internal & External
Equipment Isolation | 2003 | | Explains problems associated with utilizing both internal and external isolation in equipment. Shows that performance is better if only external isolation is used. Available on the Vibration Isolation and Seismic Control Manufacturers Association website at http://www.viscma.com/articles.htm | Table G-3 Nonproprietary Details and Other Resources for Nonstructural Components (continued) | Document
Number/Source | Resource Type | Title | Publication
Date | Relevant
Sections | Comments | |---------------------------|----------------------------|--|---------------------|----------------------|---| | ASHRAE /SMACNA | Non-proprietary
Details | Seismic Restraint Applications CD-ROM | 2002 | | Provides technical information for design and installation of seismic restraints for HVAC equipment, piping, and ducts. Includes representative bracing details, layout examples, and tables. Consists of portions of the following documents: SMACNA's Seismic Restraint Manual: Guidelines for Mechanical Systems; ASHRAE's Handbook - HVAC Applications (2003); and ASHRAE's A Practical Guide to Seismic Restraint. Produced by the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. and the Sheet Metal and Air Conditioning Contractors' National Association. | | ATC-38 | Damage
Inventory Form | ATC-38 Postearthquake Building Performance Assessment Form and Surveyor Instructions | 2001 | | 10-page form and instructions that provides standardized damage percentages and standardized codes for ceilings and partitions. Available with the ATC-38 Project report, or on the EERI website at http://www.eeri.org/ | | Dartmouth College | Sample
Specification | Dartmouth College
Design & Construction
Guidelines,
Section 15240
Seismic Restraint and
Vibration Control | 2004 | | Specification for the installation of equipment at Dartmouth College. Available at http://www.dartmouth.edu/~opdc/pdfs/15240.pdf | Table G-3 Nonproprietary Details and Other Resources for Nonstructural Components (continued) | Document
Number/Source | Resource Type | Title | Publication
Date | Relevant
Sections | Comments | |---------------------------|----------------------------|--|---------------------|----------------------|--| | DGS, DSA
(California) | Guide and
Checklist | Guide and Checklist
for Nonstructural
Earthquake Hazards in
California Schools | 2003 | | Identifies potential hazards associated with nonstructural components and provides recommendations to mitigate hazards. Includes typical details and a nonstructural earthquake hazards checklist. Published by the California State Department of General Services, Division of the State Architect, and the Governer's Office of Emergency Services, Sacramento, California. | | DOISSP | Non-proprietary
Details | Nonstructural Hazards
Rehabilitation
Guidelines; Vol. I;
Guidelines Usage,
Architectural,
Mechanical, Electrical,
Plumbing | 2003 | |
Contains guidance gathered from various sources, both public and private sources. Includes both proprietary and non-proprietary details. Published by the Department of the Interior Bureau of Reclamation, Seismic Safety Program (DOISSP), Washington, D.C. | | DOISSP | Non-proprietary
Details | Nonstructural Hazards
Rehabilitation
Guidelines; Vol. II;
Furnishings, Interior
Equipment,
Miscellaneous
Components, Mobile
Homes, Manufactured
Homes, FEMA 273, | 2003 | | Contains guidance gathered from various sources, both public and private sources. Includes both proprietary and non-proprietary details. Published by the Department of the Interior Bureau of Reclamation, Seismic Safety Program (DOISSP), Washington, D.C. | Table G-3 Nonproprietary Details and Other Resources for Nonstructural Components (continued) | Document
Number/Source | Resource Type | Title | Publication
Date | Relevant
Sections | Comments | |---------------------------|----------------------------|---|---------------------|----------------------|---| | | | FEMA 310, FEMA 178,
& ASCE 31-xx Excerpts | | | | | EERI | Damage
Inventory Form | EERI Reconnaissance/ Clearinghouse Report Form - Architectural and Nonstructural Elements | 2000 | | 2-page form consisting of broad categories, several subcategories, and blank lines to report damage and gather damage statistics. | | FEMA | Non-proprietary
Details | Final Report, Nonstructural Earthquake Mitigation Guidance Manual | 2004 | | Based on FEMA Region X Earthquake Hazard Mitigation Handbook for Public Facilities, 2002. Includes flowcharts, step-by-step procedures and some details. Divides nonstructural components into four groups: contents, exterior building elements, interior building elements, and building utilities. Prepared by URS Group, Inc. for FEMA. | Table G-3 Nonproprietary Details and Other Resources for Nonstructural Components (continued) | Document
Number/Source | Resource Type | Title | Publication
Date | Relevant
Sections | Comments | |---------------------------|----------------------------|---|---------------------|----------------------|--| | FEMA Region X | Non-proprietary
Details | Earthquake Hazard
Mitigation Handbook
for Public Facilities | 2002 | | Available at http://www.conservationtech.com/FEMA-WEB/FEMA-subweb-EQ/index.htm | | FEMA 74 | Non-proprietary
Details | Reducing the Risks of
Nonstructural
Earthquake Damage: A
Practical Guide. Third
Edition | 1994 | | Successor document to previous editions of FEMA 74, first published in 1985. | | FEMA 74 FM | Non-proprietary
Details | FEMA 74 Field Manual | 2005 | | Includes three types of details: Non-Engineered, Prescriptive, and Engineered. Contains more details than FEMA 74, along with a field data sheet based on the FEMA 74 checklist. | | FEMA 172 | Non-proprietary
Details | NEHRP Handbook of
Techniques for the
Seismic Rehabilitation
of Existing Buildings | 1992 | Chapters 5, 6 | Relevant chapters include details for electrical cabinets, chimneys, parapets, masonry partitions, raised access floors, and mechanical equipment. | | FEMA 412 | Non-proprietary
Details | Installing Seismic
Restraints for
Mechanical Equipment | 2002 | | Includes numerous elaborate details and many recommendations for seismic restraint of mechanical equipment. | Table G-3 Nonproprietary Details and Other Resources for Nonstructural Components (continued) | Document
Number/Source | Resource Type | Title | Publication
Date | Relevant
Sections | Comments | |---------------------------|----------------------------|---|---------------------|---------------------------|--| | FEMA 413 | Non-proprietary
Details | Installing Seismic
Restraints for Electrical
Equipment | 2004 | | Includes numerous elaborate details and many recommendations for seismic restraint of electrical equipment. | | FEMA 414 | Non-proprietary
Details | Installing Seismic
Restraints for Duct and
Pipe | 2004 | | Includes numerous elaborate details and many recommendations for seismic restraint of duct and piping components. | | FEMA 424 | Photos, Damage | Design Guide for
Improving School
Safety in Earthquakes,
Floods, and High
Winds | 2004 | | Includes pictures of nonstructural damage (pages 4-17 through 4-19, 4-23, 4-24, 4-30, 4-31); a list of types of nonstructural components (page 4-59); graphics for ceilings, shelves, and walls (pages 4-60 and 4-61). | | FEMA 454 | Non-proprietary
Details | Designing for Earthquakes: A Manual for Architects | 2006 | Section 6.6,
Chapter 9 | Discussion of code issues including nonstructural issues. Contains a collection of photos and generic details borrowed from various sources including: FEMA 74; details developed for the Lawrence Livermore National Lab; and the SMACNA Guidelines. Includes a discussion on the need for systems engineering, considering all parts of the building as a whole. Provides a checklist (Table 9-3) showing allocation of design responsibilities for nonstructural systems and components. | Table G-3 Nonproprietary Details and Other Resources for Nonstructural Components (continued) | Document
Number/Source | Resource Type | Title | Publication
Date | Relevant
Sections | Comments | |-----------------------------------|----------------------------|---|---------------------|----------------------|--| | Los Alamos
National Laboratory | Sample
Specification | Section 22 0548 Vibration and Seismic Controls for Plumbing, Piping, and Equipment | 2006 | | Specification for the anchorage of equipment at Los Alamos National Lab. Available at http://engstandards.lanl.gov/conspec/pdf/22_0548R0.pdf | | OCIPEP
(Canada) | Photos, Damage | Seismic Hazard Assessment and Mitigation for Buildings' Functional and Operational Components: A Canadian Perspective | 2002 | | Contains figures and photos from various sources, including FEMA 74. Includes damage photos from 1999 Chi Chi, Taiwan Earthquake: damage to rooftop equipment (page 19); collapse of free-standing non-structural wall (page 20); and damage to sprinkler systems. Prepared by the Department of Civil Engineering, University of Ottowa, for the Office of Critical Infrastructure Protection and Emergency Preparedness (OCIPEP), Ontario, Canada. | | Oregon Emergency
Management | Non-proprietary
Details | Earthquake Preparedness and Mitigation Guidance for Oregon State Agency Offices and Warehouses | 2004 | | Focuses on office and warehouse occupancies, with special attention to storage racks. Includes photos and guidance including shrink-wrap and netting to mitigate potential falling hazards. Provides some specific information on performance of furniture by specific vendors (Hayworth, Steelcase, and Artmet). | Table G-3 Nonproprietary Details and Other Resources for Nonstructural Components (continued) | Document
Number/Source | Resource Type | Title | Publication
Date | Relevant
Sections | Comments | |---------------------------|---|--|---------------------|----------------------|--| | PEER 2003/05 | Taxonomy and
Nonstructural
Damage
Inventory Form | Response Assessment
of Nonstructural
Building Elements | 2003 | | Proposes a taxonomy (classification) of nonstructural elements by functionality, modes of failure, accelerationsensitive or drift-sensitive response parameter, and repercussions of damage. Provides damageability, cost, and loss data for 200 elements. Includes a Nonstructural Damage Inventory Form
used following the Nisqually Earthquake. | | PEER 2003/12 | Non-proprietary
Details | Implementation Manual for the Seismic Protection of Laboratory Contents: Format and Case Studies | 2003 | | Presents case studies for University of California Berkeley campus labs. Suggests format for User's Manual that could be used to help occupants install do-it-yourself details for a particular facility. | | PEER 2005/03 | Taxonomy | A Taxonomy of Building Components for Performance-Based Earthquake Engineering | 2005 | | Provides a detailed taxonomy (classification) of nonstructural components. Each component is assigned a unique identification number. The list differentiates between anchored and unanchored versions of the same item. | | Sandia | Sample
Specification | Special Specification
Section 13085S -
Seismic Protection | | | Sample specification for the anchorage of equipment at Sandia (16 pages). Includes lists of equipment, detailed requirements, specific instructions for some items, load limits, and member sizes. | Table G-3 Nonproprietary Details and Other Resources for Nonstructural Components (continued) | Document
Number/Source | Resource Type | Title | Publication
Date | Relevant
Sections | Comments | |--|----------------------------|--|---------------------|----------------------|---| | Seattle Public
Schools | Non-proprietary
Details | School Facilities Manual: Nonstructural Protection Guide. Safer Schools, Earthquake Hazards, Nonstructural. Second Edition | 2000 | | Includes detailed inventory form and details not included in FEMA 74. | | Southern California
Earthquake Center | Photos, Damage | Nonstructural Issues in
Public Schools - "Stairs
to Nowhere" | 2000 | | Photos of damage in school facilities in Southern California. Available at http://www.scec.org/instanet/00news/images/mcgavin/sld00 1.htm | | University of
California, Berkeley | Non-proprietary
Details | UC Berkeley: Q-Brace
Quake Bracing
Guidelines | 2005 | | Guidelines developed for University of California,
Berkeley campus facilities. Includes detailed solutions for
contents identifying vendor supplied products or size of
hardware to use. | | USACERL
TR-98/34 | Photos,
Mitigation | Seismic Mitigation for
Equipment at Army
Medical Centers | 1998 | | Presents simple methods for reducing the seismic vulnerability of equipment at Army medical centers. Illustrations, observations, and recommendations are based on examples from Madigan Army Medical Center (MAMC). Concerns about particular well-anchored critical medical equipment are presented. Published by the U.S. Army Construction Engineering Research | Table G-3 Nonproprietary Details and Other Resources for Nonstructural Components (continued) | Document
Number/Source | Resource Type | Title | Publication
Date | Relevant
Sections | Comments | |---------------------------|-------------------------|--|---------------------|----------------------|--| | VISCMA 101-07 | Sample
Specification | Seismic Restraint Specification Guidelines for Mechanical, | 2007 | | Sample specification for seismic restraint of mechanical, electrical and plumbing equipment. Published by the Vibration Isolation and Seismic Control Manufacturer's Association, Wayne, Pennsylvania. | | | | Electrical And
Plumbing Systems | | | | **Table G-4** Proprietary Details and Products for the Protection of Nonstructural Components (continued) | Product
Source/Vendor | Product or Service Description | Comments | |--|--|--| | Chatsworth Seismic
Protection Products | Chatsworth Seismic Protection
Products | Variety of seismic protection products. Available at http://www.twacomm.com/catalog/dept_id_644.htm | | Flexhead | Flexible fire protection | Proprietary flexible connection for sprinklers heads. Available at http://www.flexhead.com/ | | Hilti | Concrete anchors and hardware | Information on product selection, different installation systems, and load data. Available at www.hilti.com | | International
Seismic Application
Technology | International Seismic Application
Technology (ISAT) Applications and
Design Manual | Focuses exclusively on mechanical, electrical, plumbing equipment and piping. Includes load tables and details showing use of products. Available at www.isatsb.com | | International
Seismic Application
Technology | 2003 IBC Specification - Seismic
Restraint of Suspended Utilities | Sample specification available at www.isatsb.com | | Kinetics Noise
Control | Kinetics noise control seismic restraint capabilities | Brochure presents restraint systems that serve to limit the movement of equipment during a seismic event. Available at http://www.kineticsnoise.com/hvac/pdf/seismic%20restraint%20capabilities.pdf | | Loos & Co | Proprietary details approved by | Includes collections of details, such as: Section 7, Sway Brace Components, Installation | **Table G-4** Proprietary Details and Products for the Protection of Nonstructural Components (continued) | Product
Source/Vendor | Product or Service Description | Comments | |---|---|--| | | OSHPD for use in California hospitals | Instructions and Details. Available at www.earthquakebrace.com | | Mason Industries | Details, Handbook, and online resources | Available at http://www.mason-ind.com/html/about.htm or http://209.200.80.33/html/seismic_engineering_index.htm | | Metraflex | Thermal and seismic expansion joints for pipe | Available at http://www.metraflex.com/seismic_met.php | | Pacific Seismic
Products | ASCE 25-97 listed seismic actuated valves for residential, commercial and industrial applications | Gas shut off valves and other seismic actuated devices. Available at http://www.psp4gasoff.com/aboutpsp.htm | | Ridg-U-Rak | Isolation system for storage racks | Isolation test of storage racks, both with and without transverse isolation. Movie of test available on website. Available at http://www.ridgurak.com | | Technotes Issue No. 21 RWDI Consulting Engineers and Scientists | Base isolation system for museum pieces or equipment | "Seismic Protection of Museum Artifacts using Base Isolation," Bujar Myslimaj, Ph.D., P.Eng., Senior Specialist, Scott Gamble B.Sc., P.Eng., Principal, Ray Sinclair, Ph.D., Principal. Available at http://go.rwdi.com/technotes/t21.pdf | | Safety Central | Earthquake safety fasteners, furniture straps, and emergency preparedness | Available at www.safetycentral.com | **Table G-4** Proprietary Details and Products for the Protection of Nonstructural Components (continued) | Product
Source/Vendor | Product or Service Description | Comments | |--------------------------|---|---| | | supplies | | | Secure Quick | Secure Quick Seismic Fastening
System | Consists of steel cable, wall bracket, and cable fasteners for attaching furniture to wood stud walls. Also provided on website, "Why You Should Not Use Plastic Tabs Devices, Velcro, Hook and Loop, Nylon Straps or Metal Braces." Available at www.quakesecure.com | | Secure-It | PC Security Hardware | Provides products to secure computer equipment. Intended as protection against theft, but security
cables and hardware could also be adapted as seismic restraint for other desktop items. Available at http://www.secure-it.com/shop/index.php/cPath/21 | | Seismic Restraints
NZ | Hardware and systems for contents: collectables, home, office, school, hospital, lab, and technology. | Available at www.seismicrestraints.co.nz | | Seismic Solutions | Seismic restraint for ducts, pipes, cable trays, and equipment using cables | Services include structural design, labor and materials for installation. Available at http://www.seismicsolutionsinc.com/details.html | | Simpson Strong-Tie | Provides load rated straps and ties | Includes link for DIY (Do-it-Yourself) projects that illustrate the use of various connectors and adhesives, which could help with some nonstructural installations. Available at | **Table G-4** Proprietary Details and Products for the Protection of Nonstructural Components (continued) | Product
Source/Vendor | Product or Service Description | Comments | |----------------------------------|--|--| | | | http://www.strongtie.com/products/categories/diy.html | | Strand Earthquake
Consultants | Engineering and products for nonstructural seismic mitigation | Distributors for GeoSIG, Pacific Seismic Products, Metraflex, and WorkSafe Technologies. | | Taylor Devices, Inc. | Viscous dampers for equipment protection | Available at http://www.taylordevices.com/SeismicDampers.htm | | The Preparedness
Center | Earthquake safety fasteners, furniture straps, and emergency preparedness supplies | Available at www.preparedness.com | | USG | "Seismic Ceiling Resource Center" | Includes a series of technical notes and guidelines related to ceilings, ceiling tracks, and shadow moldings. Available at www.usg.com and www.seismicceilings.com | | Viking | Flexible connections for sprinkler heads | Available at http://www.vikingcorp.com/databook/sprinklers/spk_accessories/070605.pdf | **Table G-4** Proprietary Details and Products for the Protection of Nonstructural Components (continued) | Product
Source/Vendor | Product or Service Description | Comments | |--------------------------|---|--| | WorkSafe
Technologies | System for base-isolation of equipment | IsoBase TM Seismic Isolation Platform, available at http://www.worksafetech.com/ | | WorkSafe
Technologies | Large variety of products for seismic protection of nonstructural components in offices, data centers, hospitals, laboratories, and warehouses. | Available at http://www.worksafetech.com/ | Table G-5 Recent and Ongoing Research Related to Nonstructural Components (continued) | Document
Number/Source | Title | Author(s) | Publication
Date | Comments | |---------------------------|---|-------------------------------------|---------------------|--| | 8NCEE-002034 | Enhancing the Resilience
of Acute Care Facilities:
An Overview of MCEER
Research | Filiatrault, A.,
et al. | 2006 | Paper at 8th National Conference on Earthquake Engineering, San Francisco, California. | | 13WCEE-00295 | Overturning Criteria for
Non-Anchored Non-
Symmetric Rigid Bodies | Boroschek,
R.L., and
Romo, D. | 2004 | Theoretical discussion of the effect of non-symmetric bodies subjected to overturning. Paper at 13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada. | | ATC-29 | Proceedings of a Seminar on Seismic Design and Performance of Equipment and Nonstructural Elements in Buildings and Industrial Structures | | 1992 | Includes information on seismic design, performance, and research pertaining to nonstructural components. Funded by the National Center for Earthquake Engineering Research and the National Science Foundation. | | ATC-29-1 | Proceedings of a Seminar on Seismic Design, Retrofit, and Performance of Nonstructural Components | | 1998 | Includes information on seismic design, performance, and research pertaining to nonstructural components. Funded by the National Center for Earthquake Engineering Research and the National Science Foundation. | Table G-5 Recent and Ongoing Research Related to Nonstructural Components (continued) | Document
Number/Source | Title | Author(s) | Publication
Date | Comments | |---------------------------|---|-----------|---------------------|---| | ATC-29-2 | Proceedings of Seminar
on Seismic Design,
Performance, and
Retrofit of Nonstructural
Components in Critical
Facilities | | 2003 | Focused principally on nonstructural components and systems in facilities with critical functions. Includes information on the state of the art, state of the practice, and efforts needed to improve both. Prepared in cooperation with the Multidisciplinary Center for Earthquake Engineering Research, and funded by the National Science Foundation. | | ATC-38 | Database on the Performance of Structures Near Strong- Motion Recordings: 1994 Northridge, California, Earthquake | | 2001 | Effort to correlate structural and nonstructural damage with ground motion parameters recorded during the 1994 Northridge Earthquake. Report includes a CD-ROM with Access database, Excel files, text files, and collection of over 500 photos. Database includes some nonstructural damage data in the following categories: "cladding separation or damage," "partitions damage," "windows damage," "lights and ceilings damage," and "Building Contents Damage." Most photos do not show damage, but provide an overview of the building from street. Report also includes the ATC-38 Postearthquake Building Performance Assessment Form and Surveyor Instructions. Nonstructural categories include Exterior Cladding/Glazing; Partitions; Ceilings; Plumbing, Electrical, Lighting, HVAC; Fire Protection; Major Fixed Equipment, Elevators, Chimneys, and Unusual Contents. | | ATC-58 | Proceedings: Mini-
Workshop/Invited
Meeting on the
Identification of | | 2005 | ATC-58 Project workshop focusing on the selection of a nonstructural component taxonomy, and identifying nonstructural components that are significant to the estimation of casualty, direct economic, and downtime losses from earthquake damage. | **Table G-5** Recent and Ongoing Research Related to Nonstructural Components (continued) | Document
Number/Source | Title | Author(s) | Publication
Date | Comments | |---------------------------|--|-----------|---------------------|--| | | Nonstructural
Components of
Significance | | | | | ATC-58 | Guidelines for Seismic
Performance Assessment
of Buildings, ATC-58
35% Complete Draft | | 2007 | Interim report on methodology for seismic performance assessment of new and existing buildings. Methodology will be applicable to most common building types designed and constructed in the United States within the past 50 years, and will estimate losses in terms of causalities, direct economic losses, and downtime as a result of earthquake damage. Loss estimation is based on fragility curves, which will be provided for both structural and nonstructural components. | | FEMA 349 | Action Plan for
Performance Based
Seismic Design | | 2000 | Predecessor document to FEMA 445. Prepared by the Earthquake Engineering Research Institute for FEMA. | | FEMA 445 | Next-Generation
Performance-Based Seismic Design Guidelines: Program Plan for New and Existing Buildings | 2006 | Section 4.2 | Describes how performance-based seismic design guidelines will be developed under the ATC-58 Project. Section 4.2 refers specifically to the development of nonstructural performance products. | Table G-5 Recent and Ongoing Research Related to Nonstructural Components (continued) | Document
Number/Source | Title | Author(s) | Publication
Date | Comments | |---------------------------|---|--------------------------------------|---------------------|--| | EERI | Learning from Earthquakes: a Survey of Surveys. | Porter, K. | 2002 | Taken from an EERI Invitational Workshop: An Action Plan to Develop
Earthquake Damage and Loss Data Protocols, September 19-20, 2002,
Doubletree Hotel, Pasadena, California. | | MCEER | ASHRAE Consortium
Investigates Performance
of Roof-Top Air
Handling Unit | | Future | MCEER's ASHRAE Consortium is beginning Phase II studies involving shake table testing of a rigidly anchored and vibration isolated roof-top air handling unit. Testing will begin in March 2008 in the Structural Engineering and Earthquake Simulation Laboratory (SEESL) at the University at Buffalo. Studies will focus on developing a specialized numerical model capable of analyzing the seismic response of various types of HVAC equipment mounted on ASHRAE-type isolation/restraint systems. | | MCEER | Seismic Vulnerability and
Protection of
Nonstructural
Components | T.T. Soong
and D. Lopez
Garcia | 2003 | Addresses seismic vulnerability and protection strategies. Divides nonstructural items into 3 categories: Unrestrained Nonstructural Components; Restrained Nonstructural components; and Nonstructural Systems, which consist of systems of nonstructural components. Cites examples of fragility curves developed for each category. Contains discussion of both damping systems and isolation systems as protection strategies. Ends with recommendations for 6 tasks: (1) Develop a Catalog of Nonstructural Components, Systems and Contents; (2) Identify Nonstructural Performance Measures; (3) Identify Engineering Demand Parameters; (4) Develop Damage Database; (5) Establish Comprehensive Testing and Certification Protocols; and (6) Performance Evaluation Case Studies/Test bed Checks. | Table G-5 Recent and Ongoing Research Related to Nonstructural Components (continued) | Document
Number/Source | Title | Author(s) | Publication
Date | Comments | |---------------------------|---|--|---------------------|--| | MCEER-99-0014 | MCEER Nonstructural
Damage Database | Kao, A., and
Soong, T.T. | 1999 | Database of earthquake damage to nonstructural elements. | | MCEER-05-0005 | "Simulation of Strong Ground Motions for Seismic Fragility Evaluation of Nonstructural Components in Hospitals" | Wanitkorkul,
A. and
Filiatrault, A. | 2005 | Published by the Multidisciplinary Center for Earthquake Engineering Research, University at Buffalo, State University of New York. | | MCEER-06-0001 | Seismic Fragility of
Suspended Ceiling
Systems | Badillo-
Almaraz,
Whittaker,
Reinhorn,
Cimellaro | 2006 | Report on testing of Armstrong ceiling systems. Concludes that compression bars and retention clips help in the behavior of ceilings, and that undersized tiles are a detriment. | | PEER 1998/05 | Rocking Response and
Overturning of
Equipment Under
Horizontal Pulse-Type
Motions | N. Makris, Y.
Roussos | 1998 | Published by the Pacific Earthquake Engineering Research Center,
Berkeley, California. | Table G-5 Recent and Ongoing Research Related to Nonstructural Components (continued) | Document
Number/Source | Title | Author(s) | Publication
Date | Comments | |---------------------------|---|---|---------------------|--| | PEER 1999/06 | Rocking Response and
Overturning of Anchored
Equipment under
Seismic Excitations | N. Makris, J.
Zhang | 1999 | Results of shake table testing. | | PEER 2001/14 | Rocking Response of
Equipment Anchored to
a Base Foundation | N. Makris, C.
Black | 2001 | Example of PEER research related to Lifelines. PEER has done series of tests funded by PG&E on electrical substation equipment including rigid bus connectors, flexible bus connectors, transformer bushings, and heavy substation equipment. | | PEER 2002/01 | Nonstructural Loss
Estimation: The UC
Berkeley Case Study | M. Comerio,
J. Stallmeyer | 2002 | Case studies of loss estimation for five University of California Berkeley campus buildings. Includes a table (Table 10) showing costs assumed for many types of equipment, and photos of lab equipment. | | PEER 2002/05 | Guidelines, Specifications, and Seismic Performance Characterization of Nonstructural Building Components and Equipment | Filiatrault, A.,
Christopoulus,
C, and
Stearns, C. | 2001 | Contents include chapters on nonstructural earthquake damage. Nonstructural items are divided into 5 groups: contents; building service equipment; building utilization equipment; interior architectural elements; and exterior architectural elements. Overview of various design guidelines and inventory of previous analytical and experimental studies. Includes recommendations, and comprehensive list of references. | Table G-5 Recent and Ongoing Research Related to Nonstructural Components (continued) | Document
Number/Source | Title | Author(s) | Publication
Date | Comments | |---------------------------|--|--------------------------------------|---------------------|---| | PEER 2003/05 | Response Assessment of
Nonstructural Building
Elements | S. Taghavi, E.
Miranda | 2003 | Proposes a taxonomy (classification) of nonstructural elements by functionality, modes of failure, acceleration-sensitive or drift-sensitive response parameter, and repercussions of damage. Provides damageability, cost, and loss data for 200 elements. Includes a Nonstructural Damage Inventory Form used following the Nisqually Earthquake. | | PEER 2003/12 | Implementation Manual
for the Seismic
Protection of Laboratory
Contents: Format and
Case Studies | W. Holmes,
M. Comerio | 2003 | Presents case studies for University of California Berkeley campus labs. Suggests format for User's Manual that could be used to help occupants install do-it-yourself details for a particular facility. | | PEER 2005/03 | A Taxonomy of Building
Components for
Performance-Based
Earthquake Engineering | Porter, Keith | 2005 | Provides a detailed taxonomy (classification) of nonstructural components. Each component is assigned a unique identification number. The list differentiates between anchored and unanchored versions of the same item. | | PEER 2005/05 | Performance Characterization of Bench- and Shelf- Mounted Equipment | S. Chaudhuri
and T.
Hutchinson | 2005 | | Table G-5 Recent and Ongoing Research Related to Nonstructural Components (continued) | Document
Number/Source | Title | Author(s) | Publication
Date | Comments | |---------------------------|--|------------------------------------|---------------------
---| | PEER 2005/07 | Experimental and
Analytical Studies on the
Seismic Response of
Freestanding and
Anchored
Laboratory Equipment | D.
Konstantinidis,
N. Makris | 2005 | Shake table testing of equipment. | | PEER 2005/12 | PEER Test bed Study on
a Laboratory Building:
Exercising Seismic
Performance Assessment | M. Comerio | 2005 | Test bed performance assessment of the UC Science Building linking performance of contents to operational failure. Shows the interdependence of building structure, systems, and contents in performance assessment, and highlights where further research is needed. | | SUNY Buffalo | Nonstructural Components Simulator (NCS). | | Future | Specialized equipment for testing nonstructural components. University at Buffalo's NEES (UB-NEES) facility is commissioning a dedicated Nonstructural Component Simulator (NCS). The NCS is a modular and versatile two-level platform for experimental performance evaluation of nonstructural components and equipment under realistic full scale floor motions. NCS can provide the dynamic stroke necessary to replicate full-scale displacements, velocities and accelerations at the upper levels of multi-story buildings during earthquake shaking. Both displacement sensitive and acceleration sensitive nonstructural components and equipment can be experimentally evaluated under full-scale floor motions to understand, quantify and control their seismic response. | Table G-5 Recent and Ongoing Research Related to Nonstructural Components (continued) | Document
Number/Source | Title | Author(s) | Publication
Date | Comments | |---|--|--|---------------------|--| | SUNY Buffalo,
CSEE-SEESL-2004-
02 | "Shake Table Testing of
Frazier Industrial Storage
Pallet Racks" | Filiatrault, A.
and
Wanitkorkul,
A. | 2004 | Published by the University at Buffalo, State University of New York, Buffalo, New York. | | SUNY Buffalo,
CSEE-SEESL-2005-
01 | "Seismic Qualification By
Shake Table Testing of a
Centrifugal Liquid Chiller
according to AC-156
Testing Protocol" | Filiatrault, A.
and
Wanitkorkul,
A. | 2005 | Published by the University at Buffalo, State University of New York, Buffalo, New York. | | SUNY Buffalo,
CSEE-SEESL-2005-
03 | "Shake Table Testing of
Ridg-U-Rak Rigid Based
and Ridg-U-Rak Patent
Pending Base Isolated
Industrial Storage Racks" | Filiatrault, A.,
Wanitkorkul,
A. and Seo, J-
M. | 2005 | Published by the University at Buffalo, State University of New York, Buffalo, New York. | | SUNY Buffalo,
CSEE-SEESL-2005-
05 | "Seismic Qualification of
a Centrifugal Liquid
Chiller by Shake Table
Testing" | Filiatrault, A.
and
Wanitkorkul,
A. | 2005 | Published by the University at Buffalo, State University of New York, Buffalo, New York. | | SUNY Buffalo,
CSEE-SEESL-2006- | "Experimental Seismic
Performance Evaluation
of ASRAE-Type | Fathali, S. and
Filiatrault, A. | 2006 | Published by the University at Buffalo, State University of New York, Buffalo, New York. | Table G-5 Recent and Ongoing Research Related to Nonstructural Components (continued) | Document
Number/Source | Title | Author(s) | Publication
Date | Comments | |---|---|---|---------------------|--| | 05 | Isolation/Restraint
Systems" | | | | | SUNY Buffalo,
CSEE-SEESL-2006-
07 | "Shake Table Testing of
Ridg-U-Rak Rigid Based
and Ridg-U-Rak Patent
Pending Base Isolated
Industrial Storage Racks:
Production Unit Testing" | Filiatrault, A.,
and
Wanitkorkul,
A. | 2006 | Published by the University at Buffalo, State University of New York, Buffalo, New York. | | SUNY Buffalo,
CSEE-SEESL-2006-
19 | "Shake Table Testing of
Ridg-U-Rak Rigid Based
and Ridg-U-Rak Patent
Pending Base Isolated
Industrial Storage Racks:
Final Production Unit
Testing" | Filiatrault, A.,
and
Wanitkorkul,
A. | 2006 | Published by the University at Buffalo, State University of New York, Buffalo, New York. | | University of Chile | Controlled Overturning of Unanchored Rigid Bodies | Boroschek,
R.L., and
Iruretagoyena,
A. | | Review of test results for equipment on an inclined surface. Results show that an incline can force overturning to occur in a preferred direction. For example, a 3-degree angle will result in an 89% probability that blocks will overturn in that direction. Could be useful information for keeping contents on shelves. |